

High Operating Temperature Heat Transfer Fluids for Solar

Thermal Power Generation UCLA, UCB, Yale

Award Number: DE-EE0005941 | January 9, 2013 | Sungtaek Ju

PROJECT OBJECTIVES

Goal: Develop liquid metals with thermophysical and corrosion properties suitable for use as high temperature (> 800 C) heat transfer fluids. Perform scaled flow loop tests to confirm the effective prevention/mitigation of corrosion and determine the convective heat transfer characteristics.

Innovation: This study employs the synergistic use of the combinatorial material synthesis and high-throughput characterization techniques together with advanced thermochemical modeling to efficiently explore vast compositional spaces.

Milestones:

- Identify at least 5 base alloys of distinctly different elemental compositions with melting points < 300 C
- Validate modeling accuracy to within 10% of the experimental values for melting point, density, and specific heat.
- Validate new static corrosion test setups with oxygen control to within 10% with the data in the existing literature.

KEY RESULTS AND OUTCOMES

1.1 Thermochemistry modeling

Identified promising elements and a preliminary list of ternary alloys for further investigation.

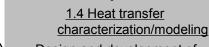
1.2 Combinatorial synthesis and characterization
Prepared a combinatorial library centered around Mg₁₅₋₆₅Al₁₇₋₆₇Sn₁₄₋₆₄ (Fig. 1) and characterized microstructures with XRD.

- 1.3 Corrosion characterization and mitigation Constructed an oxygen potential measurement system, static corrosion test setups (Fig. 2), and liquid metal creep test setups.
- 1.4 Heat transfer characterization and modeling Designed a flow loop that will serve as a test bed and an intermediate HEX loop for later high temperature loops.

APPROACH

1.1 Thermochemistry modeling

- Select promising alloys with low melting points
- Modeling to calculate the thermochemical properties of liquid mixtures



1.3 Corrosion characterization and mitigation

- Construct static corrosion tests and creep test setups
- Design of flow loops for corrosion tests

Data 1.2 Combinatorial synthesis and characterization Synthesize compositional

- Synthesize compositional libraries
- Perform high-throughput characterization

 Design and development of test bed for heat transfer tests

Sample

Design • Development of correlations for convective heat transfer

NEXT MILESTONES

1.1 Thermochemistry modeling

Further Identify alloy systems based on the solubility and oxidation characteristics as well as the melting point.

1.2 Combinatorial synthesis and characterization

- Optimize the characterization systems for melting temperature detection.
- Fabricate and characterize additional compositional libraries.

1.3 Corrosion characterization and mitigation

- Further improve static corrosion testing systems for testing over an extended period of time.
- Perform Data analysis of the micro mechanical testing on the oxide layers.

1.4 Heat transfer characterization and modeling

Complete the construction of the flow loop and perform experiments to measure heat transfer characteristics.